
VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Project Report

 On

Voice Based Automated Transport

Enquiry System

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

TABLE OF CONTENTS

1. Introduction 4

1.1 Purpose 4

1.2 About the Project 4

1.3 Benefits 5

1.4 Disadvantages 5

2. System Requirement Specification 7

2.1 Classification 7

2.2 User Requirements 7

2.3 System Requirement 8

2.4 Functional Requirements 9

2.5 Non-Functional Requirements 9

3. Design 11

3.1 Design Process 12

3.2 Architectural Design 13

4. Introduction to ASP.NET 16

5. C# 21

6. How Speech Recognition Works 23

7. How Text-to-Speech Works 27

7.1 Text Normalization 27

7.2 Homograph Disambiguation 28

7.3 Word Pronunciation 28

7.4 Prosody 29

8. ER-DIAGRAM 32
9. DATA FLOW DIAGRAM 34
10. Sequence Diagram 36

11. FLOW DIAGRAM 40
12. SAMPLE CODE 42

13. DATABASE 54
14. BABILLOGRAPHY 57

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

INTRODUCTION

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

1. INTRODUCTION

1.1 Purpose

Now this is the age of speed. Everything happens in the speed of supersonic. The data can

be transferred at the speed of light in the digital medium, can travel in the supersonic speed,

hence three is a need of information inflow in the same speed. Here is one such need of

information fast enough. We have experienced in waiting to a transport terminals for transport

controllers to get the information about the transport facility. We encounter so many times there

will be no person for providing these information which significantly wastes the time just to

know whether there is any facility or not. Here is one solution for such a problem which lessens

the human intervention in providing such information in the transport terminals.

Voice Based Automated Transport Enquiry System is the enquiry system which operates

based on the voice input given by the user. There is no communication which is understood more

appropriately than voice. This system too uses the voice commands and gives the required

information in the form of voice.

This system is can be installed in any transport terminal like Bus stands, Railway

terminals or airports.

1.2 About the Project

Voice Based Automated Transport Enquiry System is developed for providing the

information for the enquiry in transport terminals.

This project is developed using .Net technology using c# Programming language. This

uses sql server for storing the information to be provided to the user. This user Microsoft Speech

recognition to detect the voice from the user and uses the speech control to deliver the voice

output. This also displays the results on the screen for further verification.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

1.3 Benefits

 It works in more interactive way in the form of speech.

 It needs less or no human intervention.

 It is automated.

 It needs very less maintenance.

1.4 Disadvantages

 Heavy noise is a very crowded place can disturb the result.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

SYSTEM REQUIREMENTS

SPECIFICATION

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

2. SYSTEM REQUIREMENTS SPECIFICATION

Requirement Specification is the activity of translating the information gathered during

the analysis into a requirement document.

2.1 Classification

 User Requirements

 System Requirements

 Hardware Requirements

 Software Requirements

 Functional Requirements

 Non-Functional Requirements

 Feasibility Study

 Software Design Specification

2.1.1 User Requirements

Voice Commands:

1. Command should be accepted in the form of voice.

2. The system should recognize the voice command

3. The system shall process the voice command

4. The appropriate information shall be retrieved from the database.

5. The retrieved information is read and the output is given in the form of voice.

6. The relevant information also shall be displayed in the screen.

7. User shall be able to move between the Previous and Next result for the same query.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

8. User can change the query.

9. User can stop the current query from continuing.

10. User shall be able to add new commands.

11. User shall be able edit the timings of the routes.

12. Shall display all the commands.

2.1.2 System Requirements

 A set of system services and constraints in detail, The System requirements are the

more detailed specification of the User Requirements it some times serves as a contract between

the user and the developer.

Software requirements

 1. Microsoft .Net framework 2.0

 2. Visual studio 2005

 3. C# .Net

 4. MS Speech SDK

 5. MS SQL

Hardware requirements(minimum)

1. Processor : Pentium IV

2. Monitor : SVGA

3. RAM : 128MB

4. Speed : 1.5GHz

5. Secondary Device : 20GB

6. Speaker

7. Microphone

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

2.2 Functional Requirements:

Voice Commands:

 The commands are given to the system are in the form of voice commands. The given

commands are processed using voice processing.

Speech Recognition:

 The given command is to process using speech recognition.

Search the Result:

 The system shall search the appropriate result according to the given command.

Display Result:

 The system shall display the retrieved result on the screen.

Display Commands:

 The system shall display the commands that are present in the system.

Manage Information:

 The system shall provide option to add new information like route information and the

timings at which the transport facility is available.

Browse through Result:

 User shall be allowed to browse through the retrieved result. It shall allow the user to

move to previous and next result through the voice commands.

Voice Output:

 The retrieved result shall be converted to voice through the speech control of Microsoft.

2.3 Non-Functional Requirements

These are constraints on the services or functions offered by the system. They include

constraints on the development process etc.

Non-Functional requirements are requirements which are not directly concerned with the specific

functionality.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

The nonfunctional requirement for the current system is that the voice commands are to be clear

to be recognized and no intermediate noise are allowed in and around the system.

 The other classifications are:

 Product requirements.

 Organizational requirements.

 External Requirements.

Product Requirements: The source code should use the tools provided by visual studio and

software development kit. The product should provide user friendly interface so that the user can

be benefited by utilizing the device.

Organizational Requirements: This is similar to the product requirements they are derived

from the user policies and their requirements.

External Requirements: These requirements are derived from factors external to the system and

its development process. This includes how the user is going to interact with the system.

Feasibility Study

The feasibility study concerns with the considerations made to verify whether the system is

fit to be developed in all terms. Once an idea to develop the system is put forward, the question

that arises first will pertain to the feasibility aspects. Feasibility study is a test of a system

proposal according to its work ability.

In the feasibility study it focuses on mainly three questions:

 What is the user needs and how does the system meet them?

 What resources are available for given systems? Is the problem worth solving?

 What are the likely impact of the system on the organization and how it fit with the

System plans?

In the feasibility study of the project was studied to various feasibility studies performed that

is technical feasibility whether existing equipment, software were sufficient for completing the

project.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

DESIGN

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

3. DESIGN

A software design is a description of the structure of the software to be implemented, the

data which is part of the system, the interfaces between the system components and sometimes

the algorithms used. Designers do not arrive at a finished design immediately but develop the

design iteratively through a number of different versions. The design process involves adding

formality and detail as the design is developed with constant backtracking to correct earlier

designs.

 3.1 Design Process

The specific design process activities are:

 Architectural design: The sub-system making up the system and their relationships are

identified and documented.

 Object oriented design: In Object oriented design we thought of “things” instead of

operations and functions, the executing system in made up of interacting objects that

maintain their local state and operations on that state operation.

 User interface design: Good user interface design is critical to the success of the system,

an interface that is difficult to use will, at best, result in a high level of user errors.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

3.2 Architectural Design

The Componets which makes the current system is shown above. It has Four Componets

which are listed below.

 Commands

 Speech

 Search

 Administration

Commands:

This is one of the major components of the current system which recognizes the commands

given by the user. This component is responsible for recognizing the commands and interpreting

the command and sending appropriate request to the Search component.

Administration

Commands

Search

Voice Based Automated

Transport Enquiry System

Speech

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Search:

 Search components take the input as the request from the Command component and

retrieve the appropriate result from the database. it gives back to the display component and the

speech component.

Speech:

This component is used to deliver the result in the form of the voice using Microsoft

speech control. This takes input form the Search component.

Administration:

Through this component the maintenance personnel can update the information and also

the commands to the system.

frmSerachTiming
s

1

 Frm_Voice_Command

Frm_Voice_Command

frmAddTiming
s

1

1

1

1

1

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

ASP.NET

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

4. Introduction to ASP.NET

ASP.NET is more than the next version of Active Server Pages (ASP); it provides a unified

Web development model that includes the services necessary for developers to build

enterprise-class Web applications. While ASP.NET is largely syntax compatible with ASP, it

also provides a new programming model and infrastructure for more scalable and stable

applications that help provide greater protection. You can feel free to augment your existing

ASP applications by incrementally adding ASP.NET functionality to them.

ASP.NET is a compiled, .NET-based environment; you can author applications in any .NET

compatible language, including Visual Basic .NET, C#, and JScript .NET. Additionally, the

entire .NET Framework is available to any ASP.NET application. Developers can easily

access the benefits of these technologies, which include the managed common language

runtime environment, type safety, inheritance, and so on.

ASP.NET has been designed to work seamlessly with WYSIWYG HTML editors and other

programming tools, including Microsoft Visual Studio .NET. Not only does this make Web

development easier, but it also provides all the benefits that these tools have to offer,

including a GUI that developers can use to drop server controls onto a Web page and fully

integrated debugging support.

Developers can use Web Forms or XML Web services when creating an ASP.NET

application, or combine these in any way they see fit. Each is supported by the same

infrastructure that allows you to use authentication schemes, cache frequently used data, or

customize your application's configuration, to name only a few possibilities.

Web Forms allow you to build powerful forms-based Web pages. When building these

pages, you can use ASP.NET server controls to create common UI elements, and program

them for common tasks. These controls allow you to rapidly build a Web Form out of

reusable built- in or custom components, simplifying the code of a page. For more

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

information, see Web Forms Pages. For information on how to develop ASP.NET server

controls, see Developing ASP.NET Server Controls.

An XML Web service provides the means to access server functionality remotely. Using

XML Web services, businesses can expose programmatic interfaces to their data or business

logic, which in turn can be obtained and manipulated by client and server applications. XML

Web services enable the exchange of data in client-server or server-server scenarios, using

standards like HTTP and XML messaging to move data across firewalls. XML Web services

are not tied to a particular component technology or object-calling convention. As a result,

programs written in any language, using any component model, and running on any

operating system can access XML Web services. For more information, see XML Web

Services Created Using ASP.NET and XML Web Service Clients.

Each of these models can take full advantage of all ASP.NET features, as well as the power

of the .NET Framework and .NET Framework common language runtime. These features

and how you can use them are outlined as follows:

If you have ASP development skills, the new ASP.NET programming model will seem very

familiar to you. However, the ASP.NET object model has changed significantly from ASP,

making it more structured and object-oriented. Unfortunately this means that ASP.NET is not

fully backward compatible; almost all existing ASP pages will have to be modified to some

extent in order to run under ASP.NET. In addition, major changes to Visual Basic .NET

mean that existing ASP pages written with Visual Basic Scripting Edition typically will not

port directly to ASP.NET. In most cases, though, the necessary changes will involve only a

few lines of code. For more information, see Migrating from ASP to ASP.NET.

Accessing databases from ASP.NET applications is an often-used technique for displaying

data to Web site visitors. ASP.NET makes it easier than ever to access databases for this

purpose. It also allows you to manage the database from your code. For more information,

see Accessing Data with ASP.NET.

http://msdn.microsoft.com/en-us/library/aa719973%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/7bkzywba%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/7bkzywba%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/dddsc60w%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/6759sth4%28v=VS.71%29.aspx

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

ASP.NET provides a simple model that enables Web developers to write logic that runs at

the application level. Developers can write this code in the Global.asax text file or in a

compiled class deployed as an assembly. This logic can include application- level events, but

developers can easily extend this model to suit the needs of their Web application. For more

information, see ASP.NET Applications.

ASP.NET provides easy-to-use application and session-state facilities that are familiar to

ASP developers and are readily compatible with all other .NET Framework APIs. For more

information, see ASP.NET State Management.

For advanced developers who want to use APIs as powerful as the IS API programming

interfaces that were included with previous versions of ASP, ASP.NET offers the

IHttpHandler and IHttpModule interfaces. Implementing the IHttpHandler interface gives

you a means of interacting with the low-level request and response services of the IIS Web

server and provides functionality much like ISAPI extensions, but with a simpler

programming model. Implementing the IHttpModule interface allows you to include custom

events that participate in every request made to your application. For more information, see

HTTP Runtime Support.

ASP.NET takes advantage of performance enhancements found in the .NET Framework and

common language runtime. Additionally, it has been designed to offer significant

performance improvements over ASP and other Web development platforms. All ASP.NET

code is compiled, rather than interpreted, which allows early binding, strong typing, and just-

in-time (JIT) compilation to native code, to name only a few of its benefits. ASP.NET is also

easily factorable, meaning that developers can remove modules (a session module, for

instance) that are not relevant to the application they are developing. ASP.NET also provides

extensive caching services (both built- in services and caching APIs). ASP.NET also ships

with performance counters that developers and system administrators can monitor to test new

applications and gather metrics on existing applications. For more information, see ASP.NET

Caching Features and ASP.NET Optimization.

http://msdn.microsoft.com/en-us/library/aa719549%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/y5y3c2c5%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/system.web.ihttphandler%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa720144%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/xsbfdd8c%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/xsbfdd8c%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/44e5wy6k%28v=VS.71%29.aspx

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Writing custom debug statements to your Web page can help immensely in troubleshooting

your application's code. However, they can cause embarrassment if they are not removed.

The problem is that removing the debug statements from your pages when your application is

ready to be ported to a production server can require significant effort. ASP.NET offers the

Trace Context class, which allows you to write custom debug statements to your pages as

you develop them. They appear only when you have enabled tracing for a page or entire

application. Enabling tracing also appends details about a request to the page, or, if you so

specify, to a custom trace viewer that is stored in the root directory of your application. For

more information, see ASP.NET Trace.

The .NET Framework and ASP.NET provide default authorization and authentication

schemes for Web applications. You can easily remove, add to, or replace these sche mes,

depending upon the needs of your application. For more information, see Securing ASP.NET

Web Applications.

ASP.NET configuration settings are stored in XML-based files, which are human readable

and writable. Each of your applications can have a distinct configuration file and you can

extend the configuration scheme to suit your requirements. For more information, see

ASP.NET Configuration.

Applications are said to be running side by side when they are installed on the same

computer but use different versions of the .NET Framework. To learn how to use different

versions of ASP.NET for separate applications on your server, see Side-by-Side Support in

ASP.NET.

IIS 6.0 uses a new process model called worker process isolation mode, which is different

from the process model used in previous versions of IIS. ASP.NET uses this process model

by default when running on Windows Server 2003. For information about how to migrate

ASP.NET process model settings to worker process isolation mode, see IIS 6.0 Application

Isolation Modes.

http://msdn.microsoft.com/en-us/library/system.web.tracecontext%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/y13fw6we%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/330a99hc%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/330a99hc%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/330a99hc%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa719558%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/t7604sb9%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/t7604sb9%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa720149%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa720149%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa720149%28v=VS.71%29.aspx

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

C#

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

5. C#

C# (pronounced "see sharp") is a multi-paradigm programming language encompassing

imperative, functional, generic, object-oriented (class-based), and component-oriented

programming disciplines. It was developed by Microsoft within the .NET initiative and later

approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270). C# is one of the

programming languages designed for the Common Language Infrastructure.

Features

By design, C# is the programming language that most directly reflects the underlying Common

Language Infrastructure (CLI). Most of its intrinsic types correspond to value-types implemented

by the CLI framework. However, the language specification does not state the code generation

requirements of the compiler: that is, it does not state that a C# compiler must target a Common

Language Runtime, or generate Common Intermediate Language (CIL), or generate any other

specific format. Theoretically, a C# compiler could generate machine code like traditional

compilers of C++ or FORTRAN.

Some notable distinguishing features of C# are:

 There are no global variables or functions. All methods and members must be declared

within classes. Static members of public classes can substitute for global variables and

functions.

 Local variables cannot shadow variables of the enclosing block, unlike C and C++.

Variable shadowing is often considered confusing by C++ texts.

 C# supports a strict Boolean datatype, bool. Statements that take conditions, such as

while and if, require an expression of a type that implements the true operator, such as the

boolean type. While C++ also has a boolean type, it can be freely converted to and from

integers, and expressions such as if(a) require only that a is convertible to bool, allowing

a to be an int, or a pointer. C# disallows this "integer meaning true or false" approach on

the grounds that forcing programmers to use expressions that return exactly bool can

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Ecma_International
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://en.wikipedia.org/wiki/Variable_shadowing
http://en.wikipedia.org/wiki/Boolean_datatype

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

prevent certain types of common programming mistakes in C or C++ such as if (a = b)

(use of assignment = instead of equality ==).

 In C#, memory address pointers can only be used within blocks specifically marked as

unsafe, and programs with unsafe code need appropriate permissions to run. Most object

access is done through safe object references, which always either point to a "live" object

or have the well-defined null value; it is impossible to obtain a reference to a "dead"

object (one which has been garbage collected), or to a random block of memory. An

unsafe pointer can point to an instance of a value-type, array, string, or a block of

memory allocated on a stack. Code that is not marked as unsafe can still store and

manipulate pointers through the System.IntPtr type, but it cannot dereference them.

 Managed memory cannot be explicitly freed; instead, it is automatically garbage

collected. Garbage collection addresses the problem of memory leaks by freeing the

programmer of responsibility for releasing memory which is no longer needed.

 In addition to the try...catch construct to handle exceptions, C# has a try...finally

construct to guarantee execution of the code in the finally block.

 Multiple inheritance is not supported, although a class can implement any number of

interfaces. This was a design decision by the language's lead architect to avoid

complication and simplify architectural requirements throughout CLI.

 C# is more type safe than C++. The only implicit conversions by default are those which

are considered safe, such as widening of integers. This is enforced at compile-time,

during JIT, and, in some cases, at runtime. There are no implicit conversions between

booleans and integers, nor between enumeration members and integers (except for literal

0, which can be implicitly converted to any enumerated type). Any user-defined

conversion must be explicitly marked as explicit or implicit, unlike C++ copy

constructors and conversion operators, which are both implicit by default.

 Enumeration members are placed in their own scope.

 C# provides properties as syntactic sugar for a common pattern in which a pair of

methods, accessor (getter) and mutator (setter) encapsulate operations on a single

attribute of a class.

 Full type reflection and discovery is available.

http://en.wikipedia.org/wiki/Nullable_type
http://en.wikipedia.org/wiki/Memory_leak
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Type_safety
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Copy_constructor
http://en.wikipedia.org/wiki/Copy_constructor
http://en.wikipedia.org/wiki/Copy_constructor
http://en.wikipedia.org/wiki/Enumerated_type
http://en.wikipedia.org/wiki/Scope_%28programming%29
http://en.wikipedia.org/wiki/Property_%28programming%29
http://en.wikipedia.org/wiki/Syntactic_sugar
http://en.wikipedia.org/wiki/Mutator_method
http://en.wikipedia.org/wiki/Attribute_%28computing%29
http://en.wikipedia.org/wiki/Reflection_%28computer_science%29

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Speech Recognition

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

6. How Speech Recognition Works

Overview

You might have already used speech recognition in products, and maybe even incorporated it

into your own application, but you still don’t know how it works. This document will give you a

technical overview of speech recognition so you can understand how it works, and better

understand some of the capabilities and limitations of the technology.

Speech recognition fundamentally functions as a pipeline that converts PCM (Pulse Code

Modulation) digital audio from a sound card into recognized speech. The elements of the

pipeline are:

1. Transform the PCM digital audio into a better acoustic representation

2. Apply a "grammar" so the speech recognizer knows what phonemes to expect. A

grammar could be anything from a context-free grammar to full-blown English.

3. Figure out which phonemes are spoken.

4. Convert the phonemes into words.

Transform the PCM digital audio

The first element of the pipeline converts digital audio coming from the sound card into a format

that’s more representative of what a person hears. The digital audio is a stream of amplitudes,

sampled at about 16,000 times per second. If you visualize the incoming data, it looks just like

the output of an oscilloscope. It’s a wavy line that periodically repeats while the user is speaking.

While in this form, the data isn’t useful to speech recognition because it’s too difficult to identify

any patterns that correlate to what was actually said.

To make pattern recognition easier, the PCM digital audio is transformed into the "frequency

domain." Transformations are done using a windowed fast-Fourier transform. The output is

similar to what a spectrograph produces. In frequency domain, you can identify the frequency

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

components of a sound. From the frequency components, it’s possible to approximate how the

human ear perceives the sound.

The fast Fourier transform analyzes every 1/100th of a second and co nverts the audio data into

the frequency domain. Each 1/100th of a second results is a graph of the amplitudes of frequency

components, describing the sound heard for that 1/100th of a second. The speech recognizer has

a database of several thousand such graphs (called a codebook) that identify different types of

sounds the human voice can make. The sound is "identified" by matching it to its closest entry in

the codebook, producing a number that describes the sound. This number is called the "feature

number." (Actually, there are several feature numbers generated for every 1/100 th of a second

but the process is easier to explain assuming only one.)

The input to the speech recognizer began as a stream of 16,000 PCM values per second. By

using fast Fourier transforms and the codebook, it is boiled down into essential information,

producing 100 feature numbers per second.

This doesn’t work because of a number of reasons:

 Every time a user speaks a word it sounds different. Users do not produce exactly the

same sound for the same phoneme.

 The background noise from the microphone and user’s office sometimes causes the

recognizer to hear a different vector than it would have if the user was in a quiet room

with a high quality microphone.

 The sound of a phoneme changes depending on what phonemes surround it. The "t" in

"talk" sounds different than the "t" in "attack" and "mist".

 The sound produced by a phoneme changes from the beginning to the end of the

phoneme, and is not constant. The beginning of a "t" will produce different feature

numbers than the end of a "t".

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Text-to-Speech

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

7. How Text-to-Speech Works

Overview

You might have already used text-to-speech in products, and maybe even incorporated it into

your own application, but you still don’t know how it works. This document will give you a

technical overview of text-to-speech so you can understand how it works, and better understand

some of the capabilities and limitations of the technology.

Text-to-speech fundamentally functions as a pipeline that converts text into PCM digital audio.

The elements of the pipeline are:

1. Text normalization

2. Homograph disambiguation

3. Word pronunciation

4. Prosody

5. Concatenate wave segments

I’ll cover each of these steps individually

7.1 Text Normalization

The "text normalization" component of text-to-speech converts any input text into a series of

spoken words. Trivially, text normalization converts a string like "John rode home." to a series of

words, "john", "rode", "home", along with a marker indicating that a period occurred. However,

this gets more complicated when strings like "John rode home at 23.5 mph", where "23.5 mph" is

converted to "twenty three point five miles per hour".

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

7.2 Homograph Disambiguation

The next stage of text-to-speech is called "homograph disambiguation." Often it’s not a stage by

itself, but is combined into the text normalization or pronunciation components. we’ve separated

homograph disambiguation out since it doesn’t fit cleanly into either.

Text-to-speech engines use a variety of techniques to disambiguate the pronunciations. The most

robust is to try to figure out what the text is talking about and decide which meaning is most

appropriate given the context. Once the right meaning is know, it’s usually easy to guess the

right pronunciation.

7.3 Word Pronunciation

The pronunciation module accepts the text, and outputs a sequence of phonemes, just like you

see in a dictionary.

To get the pronunciation of a word, the text-to-speech engine first looks the word up in it’s own

pronunciation lexicon. If the word is not in the lexicon then the engine reverts to "letter to sound"

rules.

The letter-to-sound rules are "trained" on a lexicon of hand-entered pronunciations. The lexicon

stores the word and it’s pronunciation, such as:

hello h eh l oe

An algorithm is used to segment the word and figure out which letter "produces" which sound.

You can clearly see that "h" in "hello" produces the "h" phoneme, the "e" produces the "eh"

phoneme, the first "l" produces the "l" phoneme, the second "l" nothing, and "o" produces the

"oe" phoneme. Of course, in other words the individual letters produce different phonemes. The

"e" in "he" will produce the "ee" phoneme.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Once the words are segmented by phoneme, another algorithm determines which letter or

sequence of letters is likely to produce which phonemes. The first pass figures out the most

likely phoneme generated by each letter. "H" almost always generates the "h" sound, while "o"

almost always generates the "ow" sound. A secondary list is generated, showing exceptions to

the previous rule given the context of the surrounding letters. Hence, an exception rule might

specify that an "o" occurring at the end of the word and preceded by an "l" produces an "oe"

sound. The list of exceptions can be extended to include even more surrounding characters.

When the letter-to-sound rules are asked to produce the pronunciation of a word they do the

inverse of the training model. To pronounce "hello", the letter-to-sound rules first try to figure

out the sound of the "h" phoneme. It looks through the exception table for an "h" beginning the

word followed by "e"; Since it can’t find one it uses the default sound for "h", which is "h". Next,

it looks in the exceptions for how an "e" surrounded by "h" and "l" is pronounced, finding "eh".

The rest of the characters are handled in the same way.

7.4 Prosody

Prosody is the pitch, speed, and volume that syllables, words, phrases, and sentences are spoken

with. Without prosody text-to-speech sounds very robotic, and with bad prosody text-to-speech

sounds like it’s drunk.

The technique that engines use to synthesize prosody varies, but there are some general

techniques.

First, the engine identifies the beginning and ending of sentences. In English, the pitch will tend

to fall near the end of a statement, and rise for a question. Likewise, volume and speaking speed

ramp up when the text-to-speech first starts talking, and fall off on the last word when it stops.

Pauses are placed between sentences.

Engines also identify phrase boundaries, such as noun phrases and verb phrases. These will have

similar characteristics to sentences, but will be less pronounced. The engine can determine the

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

phrase boundaries by using the part-of-speech information generated during the homograph

disambiguation. Pauses are placed between phrases or where commas occur.

Algorithms then try to determine which words in the sentence are important to the meaning, and

these are emphasized. Emphasized words are louder, longer, and will have more pitch variation.

Words that are unimportant, such as those used to make the sentence grammatically correct, are

de-emphasized. In a sentence such as "John and Bill walked to the store," the emphasis pattern

might be "JOHN and BILL walked to the STORE." The more the text-to-speech engine

"understands" what’s being spoken, the better it’s emphasis will be.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

ER-DIAGRAM

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

8. ER-DIAGRAM

VBATES

Has

Platform

Administrat

or

Accountent Client

USER

Create new

user

Vies all user

View Report

Manage place

Bus Type

Buses

Select Place

Bus Type

Bus No.

Name

Picture

Total
seats

Name

Picture

Time

U_Id U_Nam
e

Passwor
d Re-

Password

T_id

Available
seats

From

To

Plt. No

B_N
o

B_Nam

e

B_Type

Picture

Name

No.

Plac

e

Avail.

Seats

Type

B_No

Seats

From

Via B_Type

To

Timings

Da
y

Timi

ng

B_Typ
e

Contains Contains Contains

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

DATA FLOW

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

9. DATA FLOW DIAGRAM

VBATES

Client user
Accountent

Administrator

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

SEQUENCE DIAGRAM

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

10. Sequence Diagram

Administrator VBATES Security Check

Secure Communication

Create New User

Details

Log check

Secure Communication

Logout

Insecure

Communication
Insecure
Communication

Logout

Users

View all Users

Tining

View Timings

Created

Enter User Details

Login

Validate and
Save

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Secure Communication

Add Place

Details and Save

Log Check

Secure Communication

Logout

Insecure Communication

Add Platform

Login

ACCOUNTANT VBATES Security Check

Enter Details

Add Bus Type

Enter details

Details and Save

Enter Details

Details and Save

Add Tinimgs

Details And Save

Enter Timing

Logout

Insecure Communication

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

USER SYSTEM

Select the city name

Tells the name of the city

Recognizes and tells the bus timings

Selects another city

Initializes the components

Recognizes and tells the bus timings

Stop

Creates a menu and add city names

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

FLOW DIAGRAM

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

11. FLOW DIAGRAM

User enters

System initializes the components

Create a menu and adds the city names from the city list

System asks for the city name

User enters the name of the city

User tells to stop

System closes the application

.

System recognizes, displays in a grid
view and tells the bus timings

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

CODE

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

12. SAMPLE CODE
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace ATSNew1

{

 public partial class Form1 : Form

 {

 string ConstPath = @"E:\Final ATS C#\WebATES";

 private int pvMenu;

 private int Loop1;

 private int TCount;

 private int pageSHow;

 bool Process = false;

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 SpeakWords.Visible = false;

 VoiceCmd.Visible = false;

 this.LoadFrom();

 pageSHow = 0;

 this.ResetUI();

 this.GuideCustomer("Wel come To Automated Transport Enquiry

System.... Select The Option Listed Bellow.... ");

 }

 private void LoadFrom()

 {

 // Initialize the voice control...

 VoiceCmd.Initialized = 1;

 // Create and return a Menu control

 pvMenu = VoiceCmd.get_MenuCreate("ATSEn", "Home", 4);

 // Enable our voice control

 VoiceCmd.CtlEnabled = 1;

 // Suppress any voice errors that may occur

 //VoiceCmd.SuppressExceptions = 1

 // Load our list of commands into the menu.

 lbMenu.Items.Clear();

 TCount = VoiceCmd.get_CountCommands(pvMenu);

 if (TCount > 0)

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 {

 for (Loop1 = TCount; Loop1 >= 1; Loop1 += -1)

 {

 VoiceCmd.Remove(pvMenu, Loop1);

 }

 }

 VoiceCmd.AddCommand(pvMenu, 4, "Next", "Next", "Wel-come list", 0, "");

 VoiceCmd.AddCommand(pvMenu, 5, "Back", "Back", "Wel-come list", 0, "");

 VoiceCmd.AddCommand(pvMenu, 6, "Exit", "Exit", "Wel-come list", 0, "");

 VoiceCmd.AddCommand(pvMenu, 8, "Change Option", "Option", "Wel-come

list", 0, "");

 VoiceCmd.AddCommand(pvMenu, 7, "From To", "From To", "Wel-come list",

0, "");

 lbMenu.Items.Add("From To");

 this.AddCommandToVoiceControl();

 VoiceCmd.Activate(pvMenu);

 }

 DataManager dm = new DataManager();

 private void AddCommandToVoiceControl()

 {

 DataSet dsP = dm.getPlaceList();

 lbPlacelist.DataSource = dsP.Tables[0];

 lbPlacelist.DisplayMember = "Place";

 lbPlacelist.ValueMember = "Place";

 int i = 9;

 foreach (DataRow dr1 in dsP.Tables[0].Rows)

 {

 VoiceCmd.AddCommand(pvMenu, i, dr1["Place"].ToString(), "Place",

"Palce list", 0, "");

 i++;

 }

 DataSet dsBusType = dm.GetBusType();

 lbBusType.DataSource = dsBusType.Tables[0];

 lbBusType.DisplayMember = "Name";

 lbBusType.ValueMember = "Name";

 foreach (DataRow dr2 in dsBusType.Tables[0].Rows)

 {

 // Add Command to Menu1

 VoiceCmd.AddCommand(pvMenu, i, dr2["Name"].ToString(),

"BusType", "BusTypelistenlist", 0, "");

 i++;

 }

 DataSet dsBusList = dm.getBusList();

 foreach (DataRow dr3 in dsBusList.Tables[0].Rows)

 {

 // Add Command to Menu1

 VoiceCmd.AddCommand(pvMenu, i, dr3["Number"].ToString(),

"BusList", "BusListlistenlist", 0, "");

 i++;

 }

 }

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 private void GuideCustomer(string prmString)

 {

 SpeakWords.AudioReset();

 SpeakWords.Speak(prmString);

 }

 private void VoiceCmd_CommandRecognize(object sender,

AxHSRLib._VcommandEvents_CommandRecognizeEvent e)

 {

 RecogVoice(e.command.ToString());

 }

 private string pvPreviousCmd;

 private void RecogVoice(string prmCommand)

 {

 // Process = true;

 if (pvPreviousCmd == prmCommand)

 {

 // return;

 }

 pvPreviousCmd = prmCommand;

 this.Text = prmCommand;

 if (prmCommand != "")

 {

 switch (prmCommand)

 {

 case "Next":

 lblNext.ForeColor = Color.Maroon;

 lblBack.ForeColor = Color.Blue;

 lblChangeOption.ForeColor = Color.Blue;

 NextCommand();

 break;

 case "Back":

 lblNext.ForeColor = Color.Blue;

 lblChangeOption.ForeColor = Color.Blue;

 lblBack.ForeColor = Color.Maroon;

 BackCommand();

 break;

 case "Change Option":

 lblNext.ForeColor = Color.Blue;

 lblBack.ForeColor = Color.Blue;

 lblChangeOption.ForeColor = Color.Maroon;

 ChangeOptionCommand();

 break;

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 case "Exit":

 ExitCommand();

 break;

 case "From To":

 lblNext.ForeColor = Color.Blue;

 lblBack.ForeColor = Color.Blue;

 lblChangeOption.ForeColor = Color.Blue;

 FromToCommand();

 break;

 default:

 lblNext.ForeColor = Color.Blue;

 lblBack.ForeColor = Color.Blue;

 lblChangeOption.ForeColor = Color.Blue;

 if (panelPlacelist.Visible == true)

 {

 if (PlaceSelected == false)

 {

 this.ChoosePlace(prmCommand);

 }

 else

 {

 this.GuideCustomer("You have already Selected

place... To Change Option say, Change option....");

 lblChangeOption.Text = "Already Selected place...";

 }

 }

 if (panelBusType.Visible == true)

 {

 if (BusTypeSelected == false)

 {

 this.ChooseBusType(prmCommand);

 }

 else

 {

 this.GuideCustomer("You have already Selected

Bus Type... To Change Option say, Change option....");

 lblChangeOption.Text = "Already Selected Bus Type...";

 }

 }

 if (panelBusList.Visible == true)

 {

 if (BusSelected == false)

 {

 this.ChooseBus(prmCommand);

 System.Threading.Thread.Sleep(500);

 }

 else

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 {

 this.GuideCustomer("You have already Selected

Bus... To Change Option say, Change option....");

 lblChangeOption.Text = "Already Selected

Bus...";

 }

 }

 break;

 }

 bool PlaceSelected = false;

 private void ChoosePlace(string Place)

 {

 this.GuideCustomer("You Have Choosen " + Place + ", To Continue

Say Next...");

 lblChangeOption.Text = Place;

 PlaceSelected = true;

 lbPlacelist.SelectedValue = Place;

 dm.ToPlace = Place;

 string s1 = ATES.DisplayPlaceImage(Place);

 pbPlacePic.ImageLocation = ConstPath + s1;

 if ((!string.IsNullOrEmpty(dm.ToPlace)) &&

(!string.IsNullOrEmpty(dm.BusType)))

 {

 //bus this.getBusResult();

 this.GetResultBus();

 }

 }

 bool BusTypeSelected = false;

 DataSet dsBuses;

 private void ChooseBusType(string PrmBusType)

 {

 if (dsBuses != null)

 {

 dsBuses.Clear();

 }

 this.GuideCustomer("You Have Choosen " + PrmBusType + "To

Continue Say Next");

 BusTypeSelected = true;

 lblChangeOption.Text = PrmBusType;

 lbBusType.SelectedValue = PrmBusType;

 dm.BusType = PrmBusType;

 string s2 = ATES.DisplayBusTypeImage(PrmBusType);

 pbBusTypePic.ImageLocation = ConstPath + s2;

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 if ((!string.IsNullOrEmpty(dm.ToPlace)) &&

(!string.IsNullOrEmpty(dm.BusType)))

 {

 // bus this.getBusResult();

 this.GetResultBus();

 }

 //this.getBusResult();

 }

 private void getBusResult()

 {

 dsBuses = dm.GetResult();

 gvBusList.DataSource = dsBuses.Tables[0];

 }

 localhost.ATESWebServiceManager ATES = new

ATSNew1.localhost.ATESWebServiceManager();

 private void GetResultBus()

 {

 string dt = DateTime.Now.ToString("HH.mm");

 string day1 = DateTime.Now.DayOfWeek.ToString();

 double dt1 = Convert.ToDouble(dt);

 try

 {

 dsBuses = ATES.GetResult("Bangalore", dm.ToPlace,

day1, dt1.ToString(),dm.BusType);

 if (dsBuses.Tables.Count > 0)

 gvBusList.DataSource = dsBuses.Tables[0];

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

 }

 private void ChangeOptionCommand()

 {

 if (panelPlacelist.Visible == true)

 {

 if (PlaceSelected == true)

 {

 PlaceSelected = false;

 this.GuideCustomer("Choose Place From The List Bellow...");

 dm.ToPlace = null;

 lblChangeOption.Text = "Choose Option";

 pbPlacePic.ImageLocation = "";

 dm.BusSelected = null;

 this.BusSelected = false;

 BusTypeSelected = false;

 //this.ChoosePlace(prmCommand);

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 }

 }

 if (panelBusType.Visible == true)

 {

 if (BusTypeSelected == true)

 {

 BusTypeSelected = false;

 this.GuideCustomer("Choose Bus Type From The List Bellow...");

 lblChangeOption.Text = "Choose Option";

 pbBusTypePic.ImageLocation = "";

 dm.BusType = null;

 dm.BusSelected = null;

 // change BusTypeSelected = false;

 this.BusSelected = false;

 //this.ChooseBusType(prmCommand);

 }

 else

 {

 this.GuideCustomer("You have Not Selected Option..");

 }

 }

 if (panelBusList.Visible == true)

 {

 if (BusSelected == true)

 {

 BusSelected = false;

 this.GuideCustomer("Choose Bus Number From The List Bellow...");

 lblChangeOption.Text = "Choose Option";

 dm.BusSelected = null;

 //change BusTypeSelected = false;

 //this.ChooseBus(prmCommand);

 }

 else

 {

 this.GuideCustomer("You have Not Selected Option..");

 }

 }

 }

 bool BusSelected = false;

 private void ChooseBus(string PrmBus)

 {

 this.GuideCustomer("You Have Choosen " + PrmBus + "To Continue Say Next");

 lblChangeOption.Text = PrmBus;

 BusSelected = true;

 dm.BusSelected = PrmBus;

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 }

 private void GetBusDetails()

 {

 DataRow dr = dm.GetBusDetails(dsBuses);

 if (dr != null)

 {

lblBusNo.Text = dr["BusNumber"].ToString();

lblBusType.Text = dr["BusType"].ToString();

lblFrom.Text = dr["FromPlace"].ToString();

lblTo.Text = dr["ToPlace"].ToString();

lblTime.Text = dr["Time"].ToString();

lblAvailableseats.Text = dr["AvailableSeats"].ToString();

lblTotalseats.Text = dr["TotalSeats"].ToString();

lblPlatformName.Text = dr["PlatformName"].ToString();

lblPlatformNo.Text = dr["PlatformNumber"].ToString();

pictureBoxBusType.ImageLocation = ConstPath + dr["BusTypeImage"].ToString();

pictureBox1.ImageLocation = ConstPath + dr["RootMap"].ToString();

pictureBoxPlatformImage.ImageLocation =ConstPath +

dr["PlatformImage"].ToString();

 lblVia.Text = dr["Via"].ToString();

 this.GuideCustomer("Avalibility Of Seats for The Bus Number,"

+ lblBusNo.Text + "From ," + lblFrom.Text + "To ," + lblTo.Text + "Is "

+ lblAvailableseats.Text + "Thank You Happy Journey");

 }

 }

 private void ResetUI()

 {

 switch (pageSHow)

 {

 case 0:

 panelFromTo.Visible = true;

 panelPlacelist.Visible = false;

 panelBusType.Visible = false;

 panelBusList.Visible = false;

 panelBusdetails.Visible = false;

 break;

 case 1:

 if (PlaceSelected == false)

 {

 this.GuideCustomer("Select Place From The List Bellow....");

 }

 panelFromTo.Visible = false;

 panelPlacelist.Visible = true;

 panelBusType.Visible = false;

 panelBusList.Visible = false;

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 panelBusdetails.Visible = false;

 break;

 case 2:

 if (BusTypeSelected == false)

 {

 this.GuideCustomer("Select Bus Type From The List Bellow....");

 }

 panelFromTo.Visible = false;

 panelPlacelist.Visible = false;

 panelBusType.Visible = true;

 panelBusList.Visible = false;

 panelBusdetails.Visible = false;

 break;

 case 3:

 if (BusSelected == false)

 {

 this.GuideCustomer("Select Bus Number From The List Bellow....");

 }

 panelFromTo.Visible = false;

 panelPlacelist.Visible = false;

 panelBusType.Visible = false;

 panelBusList.Visible = true;

 panelBusdetails.Visible = false;

 break;

 case 4:

 panelFromTo.Visible = false;

 panelPlacelist.Visible = false;

 panelBusType.Visible = false;

 panelBusList.Visible = false;

 panelBusdetails.Visible = true;

 break;

 default:

 break;

 }

 }

 private void BackCommand()

 {

 if ((pageSHow < 5) && (pageSHow > 0))

 {

 pageSHow -= 1;

 ResetUI();

 }

 }

 private void NextCommand()

 {

 if (this.CheckConditions() == true)

 {

 if (pageSHow < 4)

 {

 pageSHow += 1;

 ResetUI();

 }

 else

 {

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 //pageSHow += 1;

 }

 }

 }

 private bool CheckConditions()

 {

 bool Assigned = false;

 switch (pageSHow)

 {

 case 0 :

 Assigned = true;

 break;

 case 1:

 if (!string.IsNullOrEmpty(dm.ToPlace))

 {

 Assigned = true;

 }

 else

 {

 this.GuideCustomer("Select Place First....");

 }

 break;

 case 2:

 if (!string.IsNullOrEmpty(dm.BusType))

 {

 Assigned = true;

 }

 else

 {

 this.GuideCustomer("Select Bus Type, Then Continue");

 }

 break;

 case 3:

 if (!string.IsNullOrEmpty(dm.BusSelected))

 {

 Assigned = true;

 }

 else

 {

 this.GuideCustomer("Select Bus Number, Then Continue....");

 }

 break;

 case 4:

 Assigned = true;

 break;

 }

 return Assigned;

 }

 private void ExitCommand()

 {

 Application.Exit();

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

 }

 private void FromToCommand()

 {

 if (panelFromTo.Visible == true)

 {

 this.GuideCustomer("You Have Selected Form To Option.... To

Continue Say Next");

 }

 }

 private void VoiceCmd_CommandOther(object sender,

AxHSRLib._VcommandEvents_CommandOtherEvent e)

 {

 if (Process == true)

 {

 return;

 }

 RecogVoice(e.command.ToString());

 }

 private void panelBusdetails_VisibleChanged(object sender, EventArgs

e)

 {

 if (panelBusdetails.Visible == true)

 {

 if ((BusSelected == true) && (dsBuses != null) &&

(dsBuses.Tables[0].Rows.Count > 0))

 {

 // VoiceCmd.Deactivate(pvMenu);

 GetBusDetails();

 }

 else

 {

 this.GuideCustomer("NO Result Found... Try Again");

 }

 }

 }

 }

}

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

DATA BASE

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

13. DATABASE

BUS

BUS TYPE

CREATENEWUSER

PLACES

TIMING

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

Application
1) Bus Stand

2) Railway Station
3) Air Ports.

Extended Feature

1) Cost effective
2) Does not require any extra hardware component rather than micro phone(Mice).
3) This same technology can be used in other fields like hotels etc.

Advantages

1) Anybody can use with just voice knowledge .
2) 24 hrs useable with efficiency and better performance.
3) Easy interaction and can get as many information as needed.

4) Physically challenged people can also use unlike touch screen.

Disadvantages
1) Not work properly if disturbance is there.
2) Require prior voice training.

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

BABILLOGRAPHY

VOICE BASED AUTOMATIC TRANSPORT ENQUIRY
SYSTEM

2010

14. BABILLOGRAPHY

WEB SITE:-

http://www.w3schools.com/aspnet/aspnet_intro.asp
http://www.speech-topics-help.com/self- introduction-speech.html

http://www.ecma-
international.org/activities/Languages/Introduction%20to%20Csharp.pdf

http://www.csharp-station.com/Tutorial.aspx

BOOKS
Murach's ASP.NET 2.0 Web Programming with VB 2005

Pro ASP.NET 2.0 in C# 2005

http://www.w3schools.com/aspnet/aspnet_intro.asp
http://www.speech-topics-help.com/self-introduction-speech.html
http://www.ecma-international.org/activities/Languages/Introduction%20to%20Csharp.pdf
http://www.ecma-international.org/activities/Languages/Introduction%20to%20Csharp.pdf
http://www.csharp-station.com/Tutorial.aspx
http://www.onlinecomputerbooks.com/view.php?book=www.murach.com/books/a2vb/chapters.htm&t=Murach%27s+ASP.NET+2.0+Web+Programming+with+VB+2005
http://www.onlinecomputerbooks.com/view.php?book=www.theserverside.net/books/apress/ProASPNET/ProASPNET.zip&t=Pro+ASP.NET+2.0+in+CSharp+2005

